nervous tissue, focusing on prominent, specialized subcellular Segunda a sexta das 06:15 s 20:45 WebDescribes the similarities between skeletal and cardiac muscles, and references to bone tissue, accessed on 05/10/2017. eCollection 2021 Sep. See this image and copyright information in PMC. Jan 27, 2022 OpenStax. when a patient suffers from a stroke. Projections from the cell body are either dendrites, specialized in receiving input, or a single axon, specialized in transmitting impulses. (2017, February 14). WebEffective models of mammalian tissues must allow and encourage physiologically (mimetic) correct interactions between co-cultured cell types in order to produce culture microenvironments as similar as possible to those that would normally occur in vivo. Compare and contrast the structure of the three types of stratified epithelium (stratified squamous epithelium, stratified cuboidal epithelium, and stratified columnar epithelium). Creative Commons Attribution License Figure 28.18 Size of uterus throughout pregnancy [digital image]. This is opposed to other components or tissues in muscle such as tendons or perimysium. Three types of muscle | Circulatory system physiology | NCLEX-RN | KhanAcademyMedicine, 2012. Figure, http://humanbiology.pressbooks.tru.ca/wp-content/uploads/sites/6/2019/06/Anterior_and_Posterior_Views_of_Muscles-scaled.jpg, Creative Commons Attribution-NonCommercial 4.0 International License, Walls of organs of the gastrointestinal tract (such as the esophagus, stomach, and intestines), moving food through the tract by, Walls of air passages of the respiratory tract (such as the bronchi), controlling the diameter of the passages and the volume of air that can pass through them, Walls of organs of the male and female reproductive tracts; in the uterus, for example, pushing a baby out of the uterus and into the birth canal, Walls of structures of theurinary system, including the urinary bladder, allowing the bladder to expand so it can hold more urine, and then contract as urine is released, Walls ofblood vessels, controlling the diameter of the vessels and thereby affectingbloodflow andblood pressure, Walls of lymphatic vessels, squeezing the fluid called lymph through the vessels, Iris of theeyes, controlling the size of the pupils and thereby the amount of light entering the eyes, Arrector pili in the skin, raising hairs inhairfollicles in thedermis, Dilated (congestive) cardiomyopathy: the left ventricle (the chamber itself) of the heart becomes enlarged and cant pump blood our to the body. 2005;12:151171. 33: The Animal Body- Basic Form and Function, { "33.01:_Animal_Form_and_Function_-_Characteristics_of_the_Animal_Body" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "33.02:_Animal_Form_and_Function_-_Body_Plans" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "33.03:_Animal_Form_and_Function_-__Limits_on_Animal_Size_and_Shape" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "33.04:_Animal_Form_and_Function_-_Limiting_Effects_of_Diffusion_on_Size_and_Development" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "33.05:_Animal_Form_and_Function_-_Animal_Bioenergetics" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "33.06:_Animal_Form_and_Function_-_Animal_Body_Planes_and_Cavities" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "33.07:_Animal_Primary_Tissues_-_Epithelial_Tissues" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "33.08:_Animal_Primary_Tissues_-__Loose_Fibrous_and_Cartilage_Connective_Tissues" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "33.09:_Animal_Primary_Tissues_-__Bone_Adipose_and_Blood_Connective_Tissues" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "33.10:_Animal_Primary_Tissues_-__Muscle_Tissues_and_Nervous_Tissues" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "33.11:_Homeostasis_-_Homeostatic_Process" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "33.12:_Homeostasis_-_Control_of_Homeostasis" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "33.13:_Homeostasis_-_Thermoregulation" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "33.14:_Homeostasis_-_Heat_Conservation_and_Dissipation" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()" }, { "00:_Front_Matter" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "01:_The_Study_of_Life" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "02:_The_Chemical_Foundation_of_Life" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "03:_Biological_Macromolecules" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "04:_Cell_Structure" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "05:_Structure_and_Function_of_Plasma_Membranes" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "06:_Metabolism" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "07:_Cellular_Respiration" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "08:_Photosynthesis" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "09:_Cell_Communication" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "10:_Cell_Reproduction" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "11:_Meiosis_and_Sexual_Reproduction" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "12:_Mendel\'s_Experiments_and_Heredity" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "13:_Modern_Understandings_of_Inheritance" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "14:_DNA_Structure_and_Function" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "15:_Genes_and_Proteins" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "16:_Gene_Expression" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "17:_Biotechnology_and_Genomics" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "18:_Evolution_and_the_Origin_of_Species" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "19:_The_Evolution_of_Populations" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "20:_Phylogenies_and_the_History_of_Life" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "21:_Viruses" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "22:_Prokaryotes-_Bacteria_and_Archaea" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "23:_Protists" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "24:_Fungi" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "25:_Seedless_Plants" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "26:_Seed_Plants" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "27:_Introduction_to_Animal_Diversity" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "28:_Invertebrates" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "29:_Vertebrates" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "30:_Plant_Form_and_Physiology" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "31:_Soil_and_Plant_Nutrition" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "32:_Plant_Reproductive_Development_and_Structure" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "33:_The_Animal_Body-_Basic_Form_and_Function" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "34:_Animal_Nutrition_and_the_Digestive_System" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "35:_The_Nervous_System" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "36:_Sensory_Systems" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "37:_The_Endocrine_System" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "38:_The_Musculoskeletal_System" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "39:_The_Respiratory_System" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "40:_The_Circulatory_System" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "41:_Osmotic_Regulation_and_the_Excretory_System" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "42:_The_Immune_System" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "43:_Animal_Reproduction_and_Development" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "44:_Ecology_and_the_Biosphere" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "45:_Population_and_Community_Ecology" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "46:_Ecosystems" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "47:_Conservation_Biology_and_Biodiversity" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "zz:_Back_Matter" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()" }, 33.10: Animal Primary Tissues - Muscle Tissues and Nervous Tissues, [ "article:topic", "authorname:boundless", "showtoc:no", "license:ccbysa", "columns:two", "cssprint:dense", "licenseversion:40" ], https://bio.libretexts.org/@app/auth/3/login?returnto=https%3A%2F%2Fbio.libretexts.org%2FBookshelves%2FIntroductory_and_General_Biology%2FBook%253A_General_Biology_(Boundless)%2F33%253A_The_Animal_Body-_Basic_Form_and_Function%2F33.10%253A_Animal_Primary_Tissues_-__Muscle_Tissues_and_Nervous_Tissues, \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}}}\) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\), 33.9: Animal Primary Tissues - Bone, Adipose, and Blood Connective Tissues, http://cnx.org/content/m44731/latestol11448/latest, http://cnx.org/content/m44731/lateste_33_02_03.jpg, http://cnx.org/content/m44731/latest33_02_01ab.jpg, http://cnx.org/content/m44731/lateste_33_02_02.jpg, http://cnx.org/content/m44731/lateste_33_02_04.png, http://cnx.org/content/m44731/lateste_33_02_06.jpg, http://cnx.org/content/m44731/lateste_33_02_07.jpg, http://cnx.org/content/m44731/lateste_33_02_10.jpg, http://cnx.org/content/m44731/lateste_33_02_11.jpg, http://cnx.org/content/m44731/lateste_33_02_09.jpg, http://cnx.org/content/m44731/latest3_02_12abc.jpg, http://cnx.org/content/m44731/lateste_33_02_13.jpg, status page at https://status.libretexts.org, Describe the structure and function of nervous tissue; differentiate among the types of muscle tissue. 2021 Oct;64(4):388-403. doi: 10.1002/mus.27360. Skeletal muscles are made up of cylindrical fibers which are found in the locomotive system. (Work derived from Blausen 0165 Cardiomyopathy Dilatedby BruceBlaus), Betts, J. G., Young, K.A., Wise, J.A., Johnson, E., Poe, B., Kruse, D.H., Korol, O., Johnson, J.E., Womble, M., DeSaix, P. (2013, June 19). In the case of skeletal muscle, the developmen When treating cardiomyopathy, the goal is to reduce symptoms that affect everyday life. 2021 Ineex | Todos os direitos reservados. Smooth muscleis muscle tissue in the walls of internal organs and other internal structures such asblood vessels. Tipet_e_kardiomiopativeby Npatchett at English Wikipedia on Wikimedia Commons is used under a CC BY-SA 3.0 (https://creativecommons.org/licenses/by-sa/3.0) license. Smooth muscle tissue is also called non-striated as it lacks the banded appearance of skeletal and cardiac muscle. However, there are some differences in the number and shape of the bones between the two species. Figure 12.3.2 shows how the three types of muscle tissues appear under magnification. WebNervous tissue Compare and contrast the structure of the three types of connective tissue (proper, supportive connective tissue, and liquid connective tissue). Piscina semi olmpica e ambiente climatizado. What happens during a heart attack? The heart is the muscle that performs the greatest amount of physical work in the course of a lifetime. WebA. Figure10.4Muscle fiber [digital image]. Elastin helps skin to return to its original position when it is poked or pinched. The sheath of connective tissue surrounding a bundle of muscle fibers. Epub 2022 Aug 1. One of the four basic types of tissue, connective tissue is found in between other tissues everywhere in the body, including the nervous system and generally forms a framework and support structure for body tissues and organs. Stimulation of these cells by somatic motor neurons signals the cells to contract. They are both have electrochemical signalling responses which rely on an ion concentration gradient. Imagine the man in Figure 12.3.1 turns his eyes in your direction. This line, an intercalated disc, assists in passing electrical impulses efficiently from one cell to the next while maintaining the strong connection between neighboring cardiac cells, allowing the cardiac muscle cells to synchronize the beating of the heart. The devised culture system promotes increased myoblast differentiation, forming arrays of parallel, aligned myotubes on which areas of nerve-muscle contact can be detected by immunostaining for pre- and post-synaptic proteins. Alm disso, nossos alunos contam com uma infraestrutura completa oferecendo conforto antes e depois da prtica das modalidades. We dont want you building tables. 2005;113:218224. In Anatomy and Physiology (Section 28.4). So first we have the Andone Yuria that encompasses single nerve fibers and, uh is compared to the end demise, IAM and skeletal muscle. Like skeletal muscle, cardiac muscle is striated because its filaments are arranged in sarcomeres inside the muscle fibres. Nervous tissues are made of cells specialized to receive and transmit electrical impulses from specific areas of the body and to send them to specific locations in the body organized into structures called nerves. A protein that forms (together with myosin) the contractile filaments of muscle cells, and is also involved in motion in other types of cells. 1.1Case Study: Why Should You Learn About Science? They differ by the presence or absence of striations or bands, the number and location of nuclei, whether they are voluntarily or involuntarily controlled, and their location within the body. Cardiac muscle contains a great many mitochondria, which produce ATP forenergyand help the heart resist fatigue. Skeletal muscle is under voluntary, somatic nervous system control and is found in the muscles that move bones. Similar to skeletal muscle, it has cross striations in its cells, but cardiac muscle has a single, centrally-located nucleus; the muscle branches in many directions. WebTissues are organized into four broad categories based on structural and functional similarities. In the case of skeletal muscle, the developmen Structure of Skeletal Muscle Main muscle structure in detail. Skeletal_Smooth_Cardiacby OpenStax College on Wikimedia Commons is used under a CC BY 3.0 (https://creativecommons.org/licenses/by/3.0) license. When smooth muscles in the stomach wall contract, for example, they squeeze the food inside the stomach, helping to mix and churn the food and break it into smaller pieces. Science. Skeletal muscles generate heat as a byproduct of their contraction and thus participate in thermal homeostasis. By the end of this section, you will be able to: Muscle tissue is characterized by properties that allow movement. The cells are multinucleated as a result of the fusion of the many myoblasts that fuse to form each long muscle fiber. Although the power output of the heart is much less than the maximum power output of some other muscles in the human body, the heart does its work continuously over an entire lifetime without rest. Found in all forms of life, ATP is often referred to as the "molecular unit of currency" of intracellular energy transfer. WebSkeletal muscles, or the muscles that are used to control bone movement, are all voluntary muscles you can consciously control. By weight, an average adult male is about 42% skeletal muscles, and the average adult female is about 36% skeletal muscles. Tissue Eng Part B Rev. Constriction of smooth muscle occurs under involuntary, autonomic nervous control and in response to local conditions in the tissues. Cylindrical bundles of contractile proteins located inside skeletal muscle fibers are called _____. Each fascicle contains between ten and 100 (or even more!) Epub 2015 Sep 11. WebBoth, the neuron and skeletal (heart also) muscle cells generate action potentials i.e. Biomaterials. More detail is found in General Physiology #12: Skeletal Muscle Excitation Coupling. A sheath of fibrous elastic tissue surrounding a muscle. A fibrous protein that forms (together with actin) the contractile filaments of muscle cells and is also involved in motion in other types of cells. The thin, smooth membrane which lines the inside of the chambers of the heart and forms the surface of the valves. WebContrast structural and functional differences of muscle tissue Muscle is one of the four primary tissue types of the body (along with epithelial, nervous, and connective tissues), and the body contains three types of muscle tissue: skeletal muscle, cardiac muscle, and smooth muscle ( Figure 10.1.1 ). OpenStax. The primary tissue types work together to contribute to the overall health and maintenance of the human body. (Micrographs provided by the Regents of University of Michigan Medical School 2012), https://openstax.org/books/anatomy-and-physiology/pages/1-introduction, https://openstax.org/books/anatomy-and-physiology/pages/4-4-muscle-tissue-and-motion, Creative Commons Attribution 4.0 International License, Long cylindrical fiber, striated, many peripherally located nuclei, Voluntary movement, produces heat, protects organs, Attached to bones and around entrance points to body (e.g., mouth, anus), Short, branched, striated, single central nucleus, Short, spindle-shaped, no evident striation, single nucleus in each fiber, Involuntary movement, moves food, involuntary control of respiration, moves secretions, regulates flow of blood in arteries by contraction, Identify the three types of muscle tissue, Compare and contrast the functions of each muscle tissue type, Explain how muscle tissue can enable motion. It is a contractile tissue, divided on histological structure into three types: skeletal or striated. The heart muscle is smaller and less powerful than some other muscles in the body. Neural Regen Res. In some cases your doctor would also requisition a CT scan and/or genetic testing. OpenStax. Bioinspired Three-Dimensional Human Neuromuscular Junction Development in Suspended Hydrogel Arrays. A hormone is a signaling molecule produced by glands in multicellular organisms that target distant organs to regulate physiology and behavior. Contractions of smooth muscles are involuntary, so they are not under conscious control. WebThe Differences Between IBD and IBS verywell com. It is complex, having a physical and a cognitive component, and it is the result of many contributing factors. Effective models of mammalian tissues must allow and encourage physiologically (mimetic) correct interactions between co-cultured cell types in order to produce culture microenvironments as similar as possible to those that would normally occur in vivo. Constriction of smooth muscle occurs under involuntary, autonomic nervous control in response to local conditions in the tissues. Skeletal muscleis muscle tissue that is attached tobonesbytendons, which are bundles of collagen fibres. It contracts as actin and myosin filaments slide over one another. Neuromuscular junction formation between human stem cell-derived motoneurons and human skeletal muscle in a defined system. This book uses the https://openstax.org/books/anatomy-and-physiology/pages/10-2-skeletal-muscle, Betts, J. G., Young, K.A., Wise, J.A., Johnson, E., Poe, B., Kruse, D.H., Korol, O., Johnson, J.E., Womble, M., DeSaix, P. (2016, May 18).